Urea stress is more akin to EGF exposure than to hypertonic stress in renal medullary cells.
نویسندگان
چکیده
Although urea is considered to be a cell stressor even in renal medullary cells perpetually exposed to this solute in vivo by virtue of the renal concentrating mechanism, aspects of urea signaling resemble that of a peptide mitogen. Urea was compared with epidermal growth factor and hypertonic NaCl or hypertonic mannitol using a large-scale expression array-based approach. The expression profile in response to urea stress more closely resembled that of EGF treatment than hypertonic stress, as determined by hierarchical cluster analysis; the effect of urea+NaCl was equidistant from that of either solute applied individually. Among the most highly urea- and hypertonicity-responsive transcripts were genes that had previously been shown to be responsive to these solutes, validating this approach. Increased expression of the activating transcription factor 3 by urea was newly detected via expression array and confirmed via immunoblot analysis. Earlier, we noted an abrogation of tonicity-dependent gene regulation by urea, primarily in a transient transfection-based model (Tian W and Cohen DM. Am J Physiol Renal Physiol 280: F904-F912, 2001). Here we applied K-means cluster analysis to demonstrate that the genes most profoundly up- or downregulated by hypertonic stress were partially restored toward basal levels in the presence of urea pretreatment. These global expression data are consistent with our earlier biochemical studies suggesting that urea affords cytoprotection in this context. In the aggregate, these data strongly support the hypothesis that the urea effect in renal medullary cells resembles that of a peptide mitogen in terms of the adaptive program of gene expression and in terms of cytoprotection from hypertonicity.
منابع مشابه
Urea protects from the proapoptotic effect of NaCl in renal medullary cells.
Hypertonic NaCl upregulated two sensitive and specific biochemical indices of apoptosis, caspase-3 activation and annexin V binding, in a time- and dose-dependent fashion in renal medullary mIMCD3 cells. Pretreatment with urea (200 mM for 30 min) protected from the proapoptotic effect of hypertonic stress (200 mosmol/kgH(2)O) in this model. The protective effect of urea was dose dependent and w...
متن کاملThree GADD45 isoforms contribute to the hypertonic stress phenotype of murine renal inner medullary cells
Mammalian renal inner medullary (IM) cells routinely face and resist hypertonic stress. Such stress causes DNA damage, to which IM cells respond with cell cycle arrest. We report that three Growth Arrest and DNA Damage inducible 45 isoforms (GADD45α, GADDD45β, GADD45γ) are induced by acute hypertonicity in murine IM cells. Maximum induction occurs 16 18 h after the onset of hypertonicity. GADD4...
متن کاملEphA2: expression in the renal medulla and regulation by hypertonicity and urea stress in vitro and in vivo.
EphA2, a member of the large family of Eph receptor tyrosine kinases, is highly expressed in epithelial tissue and has been implicated in cell-cell and cell-matrix interactions, as well as cell growth and survival. Expression of EphA2 mRNA and protein was markedly upregulated by both hypertonic stress and by elevated urea concentrations in cells derived from the murine inner medullary collectin...
متن کاملHypertonic induction of COX-2 expression in renal medullary epithelial cells requires transactivation of the EGFR.
Hypertonic stress increases expression of cyclooxygenase-2 (COX-2) in renal medullary epithelial and interstitial cells. Because hypertonic COX-2 expression is, in part, sensitive to inhibition of the ERK MAPK, an effector of activated receptor tyrosine kinases such as the EGF receptor, we investigated a role for this receptor in signaling to COX-2 expression. Hypertonic stress increased COX-2 ...
متن کاملThree GADD45 isoforms contribute to hypertonic stress phenotype of murine renal inner medullary cells.
Mammalian renal inner medullary (IM) cells routinely face and resist hypertonic stress. Such stress causes DNA damage to which IM cells respond with cell cycle arrest. We report that three growth arrest and DNA damage-inducible 45 (GADD45) isoforms (GADD45alpha, GADDD45beta, and GADD45gamma) are induced by acute hypertonicity in murine IM cells. Maximum induction occurs 16-18 h after the onset ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 283 3 شماره
صفحات -
تاریخ انتشار 2002